Oscillation of equations with an infinite distributed delay

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillation of equations with an infinite distributed delay

−∞ x(s) dsR(t, s) = 0 the existence of nonoscillatory solutions is studied. A general comparison theorem is obtained which allows to compare oscillation properties of equations with concentrated delays to integrodifferential equations. Sharp nonoscillation conditions are deduced for some autonomous integrodifferential equations. Using comparison theorems, an example is constructedwhere oscillat...

متن کامل

Nonlinear oscillation of certain third-order neutral differential equation with distributed delay

The authors obtain necessary and sufficient conditions for the existence of oscillatory solutions with a specified asymptotic behavior of solutions to a nonlinear neutral differential equation with distributed delay of third order. We give new theorems which ensure that every solution to be either oscillatory or converges to zero asymptotically. Examples dwelling upon the importance of applicab...

متن کامل

Oscillation Criteria for Delay Equations

This paper is concerned with the oscillatory behavior of first-order delay differential equations of the form x′(t) + p(t)x(τ(t)) = 0, t ≥ t0, (1) where p, τ ∈ C([t0,∞),R),R = [0,∞), τ(t) is non-decreasing, τ(t) < t for t ≥ t0 and limt→∞ τ(t) =∞. Let the numbers k and L be defined by

متن کامل

Semilinear functional difference equations with infinite delay

We obtain boundness and asymptotic behavior of solutions for semilinear functional difference equations with infinite delay. Applications on Volterra difference equations with infinite delay are shown.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2010

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2010.08.071